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Temporally convoluted Gaussian equations for chromatographic peaks
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Abstract

Both spatial and temporal peaks that are produced by the discrete parcel model can be mathematically approximated by Gaussian functions,
but the transformation from a spatial pattern to a temporal image requires a convolution treatment. A first-order convolution is given for
temporal peaks under a linear isotherm, whereas a second-order convolution is proposed for those under non-linear isotherms. Numerical tests
show that the peak shapes generated by the proposed temporally convoluted Gaussian equations (TCG) match perfectly with those obtained
by the discrete parcel model. Although the full TCG equation may be quite complicated, it can be made easier by a recursion calculation
technique, and a group of peak curves can be plotted simultaneously on computer worksheet. The results also suggest that the temporal
distortion effect should be predominately considered, in addition to those known-to-exist spatial effects, for explaining the peak asymmetry.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. Peak asymmetry

Peak asymmetry has been puzzling chromatographers
for many years. To solve the skewed peak shape problem,
two opposing approaches have been consistently proceeded
[1]: (i) the derivation from physical models; (ii) empirical
peak shape simulation by mathematical functions. In the
former approach, the peak shape is produced by setting up
physical factors and solving the differential equations for
a tubular flow system. It is generally qualitative, providing
probable reasons why and how a peak is skewed during the
chromatographic process. A variety of physical mechanisms
have been identified, and the most widely adopted reasons
include: the non-linear isotherm that occurs in the column
[2,3]; the solution derived from Fick’s Law, in which the
diffusivity is a three-dimensional function of time due to
the multi-layered flow speed (parabolic flow pattern) in the
tubular column[4,5]; and the extra column effects (defects
from the injector, detector, connector,. . . , etc.) that cause
the unevenly distributed mass pattern[5–7]. However, these
explanations are of little consequence to practical users, as
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the instrumental conditions vary from one laboratory to an-
other. The users would require a more quantitative way for
simulating the experimental chromatogram so as to obtain
better separation results.

Numerous empirical functions have been suggested for
the peak curve fitting. They have been evaluated and sum-
marized by Di Marco and Bombi[8] into different cate-
gories. Among those, the Gaussian series with mathematical
modifications (e.g. exponential or polynomial) are proba-
bly the ultimate choice for constructing chromatographic
peaks[9–14]. There is no doubt that the Gaussian function
can provide a solid basis for the curve-fitting purpose, but
the mathematical treatments (e.g. polynomial terms) on the
peak standard deviation terms are diverse and empirical. As
a consequence, even though the modified Gaussian func-
tions can indeed fit most experimental peak curves, their
physical meanings are vague or not quite persuasive. The
connection between the two approaches (theoretical deriva-
tion and empirical fitting) has not been well established.

1.2. The missing link

One important factor, the temporal distortion effect, has
long been ignored by both communities. This effect, which
is generated due to the non-simultaneous detection at a fixed
position, can produce significant false tailings in flow injec-
tion analysis[15]. It can also cause a similar peak-image
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twisting in chromatography, which has been demonstrated
by a lately published discrete parcel model[16]. In that
model, the temporal peak data produced are plotted along the
time coordinate, to distinguish from the spatial peak shapes
which are plotted on the longitudinal axis. Various temporal
peaks (symmetrical, tailing or fronting) are generated; even
though they are spatially symmetrical throughout. Thus, the
difference (or residue) between a pair of normalized spa-
tial and temporal peaks gives the net “temporal distortion”.
It is very probable that much of the skewed fraction of the
observed peaks is induced by this effect, although a direct
experimental verification is not yet available.

It is the author’s opinion that all physical models should
be further modified to include the temporal distortion ef-
fect. On the other hand, when using mathematical func-
tions, the curve-fitting would be much better if standing
on a more reasonable platform to endorse the same effect.
The link between the two approaches might well be the
“spatial-temporal convolution”.

1.3. The convolution concept

The temporal convolution effect is not a real mechanism
that occurs inside a chromatographic column or in the in-
jector and detector, but an axial transformation process if
the broadened sample zone is observed by a single fixed
detector. The relativity is the major concern, which has al-
ready been demonstrated in the previous parcel model, and
it can be further explained by a systematic diagram as shown
in Fig. 1. In this diagram a sample plug is injected into
the column system, and the sample zone starts to expand
promptly after leaving the injector. The zone broadening
may involve many mechanisms, in-column or extra column,
symmetrical or asymmetrical. Among these, “retention” is
usually the main reason, in addition to a substantial frac-
tion of dispersion–diffusion (high in GC but relatively low
in HPLC), both are symmetrical in nature. There are several
asymmetrical factors, including the non-ideal retention, the
parabolic flow profile, as well as the extra column effect.
The combination of all these effects results in the “spatial”
concentration profile (noted asC(n) or m(n)), which should
be plotted along the longitudinal (n) coordinate at a specific
time.

The temporal image, however, cannot be obtained using
a direct transformation from the longitudinal coordinate to
a temporal scale by dividing the flow speed. The chromato-
graphic peaks, laid on a temporal coordinate (τ, a dimen-
sionless time in this study), are usually obtained by a detec-
tor located at the end of a column. The signal is recorded
on a sequential basis when the sample zone passes through.
Therefore, a temporal peak is a “composed image” of many
minute segments of the spatial patterns at various times.
Thus, the peak, denoted asC(τ) or m(τ), is a distorted one
from its real spatial shape, and the difference in between is
regarded as the “temporal distortion”. The distortion is due
to (i) the changing of the zone width and (ii) the changing

Fig. 1. Systematic diagram showing the possible broadening mechanisms
during the chromatographic process and the concept of convolution. On
the left, the initial sample zone is broadened by a number of mecha-
nisms, mainly by “in-column” retention and dispersion–diffusion, which
are symmetrical in nature. Several non-ideal and extra column effects
may also contribute a small portion of the zone broadening, which might
be asymmetrical. The resultant spatial pattern along then coordinate, if
observed by a fixed detector, will be distorted on the temporalτ coor-
dinate. The process is termed the “spatial-temporal axial-transformation
convolution” or simply “temporal convolution”.

of the migration speed during the passage through the de-
tector. Its scale relates to the position of the observer and the
isotherm programming rather than the physical mechanisms
occurring in the column.

1.4. Focus of this work

The complete peak formation process (spatial band broad-
ening plus temporal convolution) can be very complicated.
For simplicity, these spatially induced asymmetrical factors
are not considered in this study, and only the in-column re-
tention behavior and its corresponding convolution process
are emphasized. The broadening mechanism follows the pos-
ture of the previous discrete parcel model, and a temporally
convoluted Gaussian function (TCG) is proposed to gener-
ate basic chromatographic peak shapes. The results will give
clues to explain, “How a Gaussian-distributed pattern can
be recorded to have various asymmetrical shapes”. In other
words, the TCG equations described here may be regarded
as the continuous solution of the discrete parcel model.

2. Theoretical

2.1. Basic Gaussian curve

Since the entire convolution treatment is established on
the Gaussian function, it is necessary to emphasize the



S.-C. Pai / J. Chromatogr. A 1028 (2004) 89–103 91

meaning of each mathematical term. A basic Gaussian
function, denoted asy(x), consists of three components, i.e.
the peak areaA, the zone width or standard deviationσ,
and the locationa on thex coordinate. The mathematical
expression is:

y(x) = A√
2πσ

e−[(x−a)/(√2σ)]2 (1)

whereA, σ anda are given numbers, independent of each
other. The produced curve is a symmetrical pattern (Fig. 2).

For generating chromatographic peaks, these components
may be related to each other in different ways (limiting
cases). Three limiting derivatives will be described in this
study, and they are also illustrated inFig. 2.

Type I—The standard deviation (σ) is correlated to the po-
sition (a). This limiting case applies to most longitudinal
zone broadenings. SinceA, a andσ(a) are all fixed (or given
values), the curve is still symmetrical. This type of equation
is used to simulate the spatial distribution pattern along a
column (x-axis is the column length).

Fig. 2. Basic Gaussian equation (y(x)) and three limiting derivatives (Types I, II and III), which are used to construct chromatographic peaks. Examples
are illustrated on the right. SymbolsA, a andσ represent peak area, peak location and standard deviation, respectively.

Type II—If σ becomes a function ofx, while A anda re-
main constant, the peak pattern may be distorted to appear
asymmetrical. The mathematical treatment for this distor-
tion is called the “convolution” along thex coordinate. The
peak summit may have a small shift from its expected po-
sition a. The Type II equation is used to simulate temporal
chromatographic peaks under a linear condition. Thex-axis
here represents time (not length). The peak position remains
constant since only the standard deviation termσ(x) is vari-
able of time.

Type III—If both σ anda are functions ofx, then a double
distortion occurs. This type of curve, while still maintaining
the identical peak areaA, will have various appearances
depending on the conditions given. It could be nearly sym-
metrical, or having a prolonged or fronting tail, or have er-
ratic shapes if the conditions are designated to be step-wise
along thex coordinate. This limiting type is applied to con-
struct a chromatographic peak under a non-linear isotherm.
Both the standard deviationσ(x) and peak positiona(x) are
variable alongx (time) axis, so the Gaussian peak curve
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receives a “second-order” convolution on the observing
coordinate.

The details of those peak parameters are described sepa-
rately in the following sections.

2.2. Peak parameters

Most parameters and symbols used in this study are the
same as those listed in the previous paper describing the
discrete parcel matrix[16]. In that model, a column (length
L) is divided inton small sections, each one is�L, soL =
n�L; and the time durationt is divided into many small
time steps, each step is�t and t = τ �t. Thus the column
operation is displayed on a dimensionlessn× τ integer ma-
trix. Plotting data along then coordinate at selectedτ gives
the “spatial” mass distribution pattern, whereas plotting data
along theτ coordinate at a fixed column lengthn generates
the “temporal” chromatographic peak.

The present study is a continuous one; thereforen and
τ may not necessarily be integers. These two symbols are
re-defined as the “dimensionless length and time”. To match
the scale of the parcel model for comparison, the flow speed
of the influent carrier is still defined to beυ = dn/dτ = 1
in this paper.

2.2.1. Partition equilibrium
At a constant flow speed, the partition equilibrium of mass

between the stationary and mobile phases at any specifiedn
andτ obeys the dynamic isotherm:

k′′(τ) = ms(n,τ)

mm(n,τ)
(2)

wherek′′(τ) is the dynamic partition ratio at a specific time
τ. If k′′(τ) is constant throughout the elution period, it is
called a linear isotherm. If not, it is a non-linear isotherm.

Each analyte has an initialk′′0 value. Thek′′(τ) value can be
programmed to change during the elution. In gas chromatog-
raphy, it is very common to set up a temperature program to
serve this purpose. Thus, under a non-linear isotherm,k′′(τ)
can be expressed as an exponential function of time, with a
decay constantλ which is proportional to the rate of tem-
perature elevation (dT/dτ).

k′′(τ) = k′′0 e−λτ (λ�0) (3)

Examples are given inFig. 3a and b.

2.2.2. Flow speed and migration speed
If the flow speed of the mobile carrier isυ = 1, the

average migration speed of an analyte in the column at a
given timeτ is defined asυm(τ).

υm(τ) = 1

k′′(τ)+ 1
(4)

Examples are given inFig. 3c.

2.2.3. Peak position
The peak position along then coordinate at a given timeτ

is denoted asnp(τ). It is obtained by integrating the migration
speed (dnp/dτ = υm(τ)) along time. Thus, under a linear
isotherm (λ = 0), it can be expressed as:

np(τ) = ns + τ

k′′0 + 1
(5)

wherens is the longitudinal shift, an artifact in the parcel
model due to the discrete calculation (to be 0.5 when the
initial zone widthi = 1). It may be ignored whenτ is large.
Under a non-linear isotherm, thek′′(τ) is no longer a fixed
value (Eq. (3)), and the position becomes:

np(τ) = ns + τ + 1

λ
ln(k′′0 e−λτ + 1)− 1

λ
ln(k′′0 + 1) (6)

whereλ is the decay constant (λ > 0). Thens term remains
here although it might be negligible whenτ is large.

2.2.4. Spatial peak standard deviation
The standard deviation on then coordinate is denoted as

σn(τ). It is calculated by taking the square root of the initial
zone variance plus the integration of the variance broadening
rate (i.e. dσn(τ)

2/dτ = k′′(τ)/(k′′(τ)+1)2) at a specific time
τ [17].

Under a linear isotherm, the standard deviation of a peak
at a specific timeτ is:

σn(τ) =
√
σ2

0 + k′′0
(k′′0 + 1)2

τ (7)

where σ0 is the initial standard deviation of the injected
sample zone, to be 0.34 in the parcel model (accounted by
taking 34% of the possibility range of the initial zone width
i = 1).

Under a non-linear isotherm, whenk′′(t) = k′′0 e−λτ , the
equation for the standard deviation is:

σn(τ) =
√
σ2

0 + 1

λ(k′′0 e−λτ + 1)
− 1

λ(k′′0 + 1)
(8)

whereλmust be larger than 0 in this equation. The temporal
variations of this parameter under various conditions (linear,
non-linear and combined) are illustrated inFig. 3d.

2.2.5. Temporal peak standard deviation
The transformation of the spatial peak widthWn(τ) or

σn(τ) to a temporalWτ(τ) or στ(τ) is made simply by di-
viding the migration speed:

στ(τ) = σn(τ)

υm(τ)

or

στ(τ) = σn(τ)(k
′′(τ)+ 1) (9)

Examples are illustrated inFig. 3e.
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Fig. 3. Graphic display showing examples of the variations of peak parameters during the elution period. The isotherms are linear (left), one-stage
non-linear (middle), and stage-wise as a combination of the two (right). (a)–(e) Refer to text, (f) a hypothetic detector is located atn = 20, (g) the mass
patterns are presented for the stationary, mobile phases and the total. Only the mobile phase peak (solid line) can be observed by the detector. (h) the
observed temporal peak image, with a peak height close to that of the spatial mobile phase peak, but its positionτr is slightly different fromτrm.
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2.2.6. Migration map
The plotting of the moving track of an analyte on the

longitudinal-temporal map gives a clear picture of how
the sample zone moves and expands during its passage
through the column. The curve ofnp(τ) on the map is
the migration route of the mass center; the plotting of
np(τ) + σn(τ) and np(τ) − σn(τ) gives the standard de-
viation thresholds accompanied with the migration route
(seeFig. 3f).

2.2.7. Mass retention time for a given column length
For a column of given lengthN, the time required for the

mass peak center to arrive at the detector is noted asτrm.
Thus, under a linear isotherm, it is calculated by (solving
Eq. (5)):

τrm = N − ns

υm

or

τrm = (N − ns)(k
′′
0 + 1) (10)

However, under non-linear isotherms, theτrm value is diffi-
cult to obtain by an equation, as one may try to solveτrm
from Eq. (6) for a given column lengthN:

N = ns + τrm + 1

λ
ln(k′′0 e−λτrm + 1)− 1

λ
ln(k′′0 + 1) (11)

and there is a direct solution forτrm but a complicated math-
ematical treatment would be required. Nonetheless, it is not
intended to do so because this parameter is not useful in
the later convolution process (a hypotheticτ∗rm(t) should be
used for a non-linear isotherm, which will be described in
Section 2.2.9). If one must find a value forτrm, it would be
much easier to estimate it graphically from the migration
map (seeFig. 3f).

2.2.8. Peak area
The peak area is related to the initial massm0 (or con-

centrationC0) and size of injection. In the parcel model, the
vertical axis is in a “mass” unit and the sample size is de-
fined to bei = 1, thus the peak areas areAn = m0i = m0 on
the longitudinal coordinate andA� = An/υ on the temporal
coordinate. Since the flow speedυ is also defined to be 1,
for simplicity all peak areas in this paper can be expressed
asm0.

2.2.9. Expected arrival time
This is a hypothetical parameter (not seen in the previous

parcel model), quite tricky but the key to the later convo-
lution process. It is used to extract a segment of a curve at
time τ when the mass center has yet to arrive at the detector.
This is explained graphically inFig. 4.

Under a non-linear isotherm, the migration curve is bend-
ing downward on the map. If the column length is desig-
nated asN, at a specific timeτ, the distance that has been
traveled isnp(τ), the distance left to go isN − np(τ). At the

Fig. 4. Calculation ofτ∗
rm(τ) from the migration map. For a given column

length N, the current peak location at timeτ is np(τ), with a remaining
distance ofN − np(τ) to reach the end of the column. At the current
migration speedυm(τ) = 1/(k′′(τ)+ 1), it needs an extra travel time of
τextra = (N − np(τ))(k

′′(τ) + 1) to arrive at the detector. The expected
arrival time at a specific timeτ is calculated byτ∗

rm(τ) = τ + τextra.

current migration speed,υm(τ) = 1/(k′′(τ) + 1), it would
need more time,τextra(τ) = (N−np(τ))(k

′′(τ)+1), to arrive
at the detector.

Thus, the position of the hypothetical peak summit, or the
expected arrival time, denoted asτ∗rm(τ), at a given timeτ
becomes:

τ∗rm(τ)= τ +
[
N − (ns + τ + 1

λ
ln(k′′0 e−λτ + 1)

− 1

λ
ln(k′′0 + 1)

]
(k′′0 e−λτ + 1) (12)

For linear cases, the expected arrival time is a constant
throughout, and thereforeτ∗rm(t) = τrm = (N − ns)(k

′′
0 + 1)

(seeEq. (10)).

2.3. Mass distribution pattern

In most cases (as long as the initialk′′0 is not too small or
too large, and time is not too short), the mass distribution
pattern along a column can be approximated by a limiting
Type-I Gaussian equation:

mtotal(n) = m0√
2πσn(τ)

e−[(n−np(τ))/(
√

2σn(τ))]2 (13)

wheremtotal (n) is the total mass found along the column
length (onn coordinate),m0 the initial injected mass value
or peak area,np(τ) the position of the peak at a specific
time (Eq. (5) or (6)), andσn(τ) the standard deviation of the
sample zone at the same given time (Eq. (7) or (8)). Sinceτ
is a given value, the resultant pattern is a symmetrical curve
centering atnp(τ). The complete expressions of the equation
for linear and non-linear isotherms are illustrated inFig. 5.

The total mass curve can be further divided into stationary
and mobile-phase mass curves (i.e.ms(n) andmm(n) curves)
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Fig. 5. Construction of Gaussian equations (Eq. (13)) for the mass distribution patterns under (a) linear and (b) non-linear isotherms. Since the peak
position and standard deviation are given values, both equations are in the format of limiting Gaussian Type-I. (a) Linear isotherms: Gaussian Type I
(ns, m0, k′′

0, σ0 and τ are given values). (b) Non-linear isotherms: Gaussian Type I (ns, m0, k′′
0, σ0, τ andλ are given values).

according to the partition equilibrium at timeτ. The three
curves are synchronized to each other, therefore:

ms(n) = k′′(τ)
k′′(τ)+ 1

mtotal(n) (14)

mm(n) = 1

k′′(τ)+ 1
mtotal(n) (15)

2.4. Temporal peak

The temporal view of a spatial pattern (the chromato-
graphic peak) is actually composed of many segmental
pieces that are taken from a series of spatial peaks. Thus, at
a specific timeτ, the detecting signal is a part of a Gaussian
equation with a standard deviationστ(τ), and a hypotheti-
cal peak position atτ∗rm(t), at a current migration speed of
υm(τ) = 1/(k′′(τ) + 1). The peak area is the same as the
spatial peak ifυ = 1.

Thus, the limiting Type-III Gaussian Equation is applied
here for the non-linear isotherm, and the general form is
given as:

mm(τ) = m0√
2πστ(τ)

e−[(τ−τ∗rm(τ))/(
√

2στ(τ))]2 (16)

weremm(τ) is the continuous mass signal recorded for the
“mobile phase mass only” along theτ coordinate,m0 the

initial injected mass value,στ(τ) the standard deviation at a
specific timeτ on theτ coordinate. The expected arrival time,
τ∗rm(τ), should be substituted byEq. (12) for a non-linear
isotherm. For linear isotherms, since theτ∗rm(τ) is no longer
a variable with time (substituted byEq. (10)), the equation
becomes much simpler, and it exactly matches the format of
the Type-II Gaussian curve. The complete presentations of
Eq. (16)are demonstrated in a systematic format inFig. 6,
for both linear and non-linear isotherms.

3. Results and discussion

3.1. Comparison with parcel model

The curves generated byEqs. (13)–(16)are compared
with those generated by the discrete parcel matrix[16]. For
unifying the column conditions, all parameters are dimen-
sionless, and several values are given as follows: the peak
aream0 = 1; the flow speedυ = 1; the longitudinal shift
ns = 0.5; and the initial standard deviationσ0 = 0.34.

In the figures of the following sections, the peaks obtained
by the parcel matrix method are marked as discrete circles,
while the peaks generated by the proposed equations are
plotted in continuous solid lines.
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Fig. 6. Temporally-convoluted Gaussian equations (Eq. (16)) for chromatographic peaks under (a) linear and (b) non-linear isotherms. The standard
deviation in both equations varies with time. Under a linear isotherm, the peak position is a fixed value, and the equation fits the format of a Gaussian
Type-II curve. Under a non-linear isotherm, the peak position is variable with time, and the equation is a typical Gaussian Type-III curve. (a) Linear
isotherm: Gaussian Type II (N, ns, k′′

0 andσ0 are given values. (b) Non-linear isotherm: Gaussian Type III (N, ns, k′′
0, σ0 andλ are given values).

3.2. Mass distribution patterns

The plotting ofEqs. (13)–(15)for the total mass, station-
ary and mobile-phase masses along a column are demon-
strated inFig. 7. In the linear case (seeFig. 7a), a com-
pound having a partition ratiok′′0 = 5 is moving following
Eq. (5), its moving track shows a straight line on the migra-
tion map. The standard deviation is expanding while mov-
ing following Eq. (7). The patterns atτ = 20, 40 and 60 are
plotted (in continuous lines) and compared with those ob-
tained by the parcel calculation (in discrete circles). It can be
seen that only in the beginning stage, e.g.τ = 20, do small
deviations occur between the two sets of data (the parcel
peaks are slightly not symmetrical). But, as time prolongs,
the Gaussian curves match perfectly with the discrete parcel
peaks.

Similar situations occur in the non-linear case inFig. 7b.
When the decay constant isλ = 0.02, a compound with

an initial k′′0 = 10 is migrating following a curvature track
of Eq. (6) on the migration map, with an expansion of
the standard deviation followingEq. (8). The plottings for
Eqs. (13)–(15)give almost identical peak patterns as those
obtained by the parcel model.

3.3. Chromatographic peak

The plottings of the chromatographic peaks byEq. (16)
are demonstrated inFig. 8. The migration map is also pre-
sented to assist the explanation. A hypothetic detector is lo-
cated atn = 20.

Under a linear isotherm, inFig. 8a, three compounds hav-
ing k′′0 values of 1, 2 and 5 are given for examples. The mass
centers arrive at the detector atτrm = 39, 58.5 and 117,
respectively. Since the migration route is linear, each ex-
pected arrival time at any time is a constant(τ∗rm(τ) = τrm).
The peak position term inEq. (16)becomes a fixed value,
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Fig. 7. Migration map demonstrating the peak position and zone broadening (vertical bar) along then coordinate, together with the mass distribution
patterns (total, stationary and mobile phases) atτ = 20, 40 and 60, respectively. Peaks that are generated byEqs. (13)–(15)are presented as continuous
lines, whereas discrete circles are corresponding data calculated from the parcel model. (a) under linear isotherm,k′′

0 = 5; (b) under a non-linear isotherm,
with an initial k′′

0 = 10 and a decay constantλ = 0.02.

leaving only the standard deviation term which is still a
function of time. Thus, the temporal image under a linear
isotherm fits the condition of the limiting Gaussian Type-II
curve. The TCG peaks (plotted in continuous lines) coincide
with those obtained by the parcel peaks (plotted in discrete
circles).

Under a non-linear isotherm, the situation is different. In
Fig. 8b, three compounds with initialk′′0 values of 1, 10 and
50 are migrating under a decay constant ofλ = 0.02. The
expected arrival time(τ∗rm(τ)) becomes variable with time,
and therefore the peak position term inEq. (16)is not a con-
stant. The minimum(τ∗rm(τ)) values (which reveal the actual
arriving timeτrm) were found atτ = 33.3, 90.8 and 160.1,
respectively. The resulting peak starts with a prolonged tail-
ing whenk′′0 is low, but gradually turns to a fronting shape.
The peak equation becomes the limiting Gaussian Type-III
curve. Similar to those of the linear case, the continuous
peaks (plotted in continuous lines) match perfectly well with
that obtained by the parcel model (discrete circles).

3.4. Tailing on the temporal coordinate

Also in Fig. 8, the expansion rate of the standard deviation
along theτ coordinate (στ(τ)) is particularly pronounced
(plotted in the bottom), which can be regarded as an index
for the judgment of “peak tailing”. Under a linear condition,
the sample zone expands proportionally to the square root
of time, and all peaks carry a “normal-type” or prolonged

tailing. Under a non-linear condition, the sample zone is
still expanding spatially, but not necessarily on the tempo-
ral coordinate (στ(τ) = σn(τ)(k

′′(τ) + 1)). If the standard
deviationστ(τ) at the detection point is expanding, then the
peak carries a prolonged tail. Otherwise, the peak appears to
be fronting. The horizontal bars (representing the standard
deviation ranges of the peaks at the detector) give a good
indication of the symmetry of the tail. For the examples in
Fig. 8b, only the first compound gives the prolonged type of
tailing, whereas the other two are of the fronting type. This
can also be explained that the migration speed is accelerated
when passing through the detector, so a “fat” sample zone
can be viewed as relatively “slender” in its recorded image.

A tailing index can be defined as:

ψ(τrm) = dστ(τrm)

dτ
(17)

whereψ(τrm) is the index for the peak arriving at the de-
tector. If ψ > 0, the peak has a prolonged tail;ψ = 0, it
has a Gaussian-like shape; andψ < 0, the peak becomes a
fronting type. This rule applies only to the one-stage pro-
gramming of the isotherm. If the isotherm is stage-wise, the
peak appearing near the changing point becomes segmental.

3.5. The temporal shift

As previously mentioned in the parcel model, the position
of a chromatographic peak on theτ coordinate (denoted
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Fig. 8. Demonstration of the temporally convoluted Gaussian (TCG) peaks on theτ coordinate. (a)k′′
0 = 1, 2 and 5 under a linear isotherm; (b)k′′

0 = 1,
10 and 50 under a non-linear isotherm with a decay constant ofλ = 0.02. (Top) the migration map with a hypothetical detector atn = 20, (middle)
peaks generated byEq. (16)are presented by continuous lines, whereas discrete circles are data calculated by the parcel model, (bottom) the temporal
standard deviation (horizontal bar) at the peak position serves as an indicator of peak symmetry.

as τr) may differ from the actual arrival time (τrm). The
peak position shift is obvious and consistent to beτrm −
τr = 0.5k′′0 under linear isotherms. For the example shown
in Fig. 3, when k′′0 = 2, the arrival time isτrm = 58.5,
and the peak summit appears atτr = 57.5 on the recorder.
For non-linear cases, the shift can also be approximated by
0.5k′′(τrm), but this relationship does not completely apply
under a step-wise programmed isotherm. The shift might
turn to the other direction, i.e. the peak summit may appear
near or even afterτrm, depending on the given conditions.

3.6. Recursion-assisted TCG curve

The TCG peak equation shown inFig. 6 is quite com-
plicated. It can be even more complicated if the isotherm
is separated into several stages during the operation. For
the convenience of running such a multi-stage condition
on a computer worksheet, a recursion technique is rec-
ommended. In other words, the mathematical terms in the
TCG equation can be regarded as “subroutines”, which
are calculated separately in a recursion manner. The only
condition is that the time step number must not be too
small.

The procedures for setting up the recursion-assisted TCG
on Microsoft Excel are demonstrated inFig. 9. The recursion
formulae are:

k′′(τ) = k′′(τ − 1)× (1 − λ(τ)) (18)

np(τ) = np(τ − 1)+ 1

(k′′(τ)+ 1)
(19)

σn(τ) =
√
σn(τ − 1)2 + k′′(τ)

(k′′(τ)+ 1)2
(20)

στ(τ) = σn(τ)× (k′′(τ)+ 1) (21)

τ∗rm(τ) = τ + (N − np(τ))× (k′′(τ)+ 1) (22)

These formulae are also presented in the Excel format in
Fig. 9. They provide the basic parts to build a Gaussian
curve along time coordinate. In this way, if the time number
is not too small, one can easily produce a peak shape which
is compatible to that produced by a discrete parcel matrix
or a completely continuous equation.

The recursion-assisted TCG curve (RATCG) takes advan-
tages of both the TCG and the parcel model in producing
the temporal peak under multi-stage programming:
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Fig. 9. Illustration of the recursion-assisted technique for plotting the TCG curve on the Excel worksheet. It is probably the easiest way to draw a single
chromatographic peak under a multi-stage isotherm.

(1) It does not need to type a long TCG equation for the
calculation.

(2) It fits all types of isotherm programming, including lin-
ear, one-stage non-linear and multi-stage isotherms. The
decay constant can be set zero for all cases (i.e.λ = 0
is allowed in the recursion calculation).

(3) It does not need to produce a vast parcel matrix
(two-dimensional) for a longer column.

Since the RATCG curve is probably the simplest way to
produce a chromatographic peak, one may generate many
peaks on the same worksheet and combine them to create
a chromatogram. For further examples with Excel one may
refer to a recent textbook by de Levie[18].

3.7. Multi-stage isotherm

Nearly all GC applications involve the setting up of a
temperature program for the optimal separation of a group
of components. Thus, the program may consist of a start-
ing linear isotherm stage for those very mobile components,
followed by the increase of temperature to separate sequen-
tially compounds with variousk′′0 values. The elevation can
be made in different stages, depending on the group charac-
teristics. At the end, a terminal stage might be given to accel-
erate those very retarding compounds to leave the column. In
real applications, the temperature programming varies from
case to case, depending on the nature of the sample, as well
as the conditions of instrumentation.
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Fig. 10. Overlapped plot of a group of peaks under multi-stage isotherms drawn by the recursion-assisted temporally convoluted Gaussian curves (RATCG)
on the Excel worksheet. The detector is located atn = 10. Case-1, two-stage programming, ten components with initialk′′

0 values of 1, 2, 3, 4, 5, 6,
7, 8, 9 and 10, respectively. Case-2, five-stage programming, initialk′′

0 values are 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512, respectively. The initialk′′
0

values for both Cases 3 and 4 are 1, 2, 4, 8, 16, 32, 64, 128, 256 and 512, respectively. Case 3, multi-stage programming with two non-linear intervals.
The peak shape follows a t-f-t-f-t sequence, with obvious segmental shapes when near the changing points. Case 4, multi-stage programming with two
linear intervals and a terminal stage. The peak shape follows a t-f-t-f-G sequence. In the ending period, peaks are nearly Gaussian.
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Fig. 10. (Continued).
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Using the RATCG equation as a tool, one may readily
simulate different situations on a computer worksheet. Sev-
eral examples are illustrated inFig. 10, in which the time
span isτ = 0–250 and a hypothetic detector is located at
n = 10.

Case 1 (Two stage programming). Ten compounds with ini-
tial k′′0 values of 1, 2, 3, 4, 5, 6, 7, 8, 9 and 10 are tested.
The isotherm is constant (λ = 0) fromτ = 0–100, and starts
to decrease with a decay constant ofλ = 0.02 afterτ =
101. In addition to the resultant chromatographic curves, the
migration map and other peak parameters are also plotted.
In the linear rangeτ < 100, the peaks are typical tailing
shapes. After the changing point, the peaks become segmen-
tal, and the appearance changes from tailing to segmental
fronting.

Case 2 (Five-stage programming). The initialk′′0 values for
the ten tested compounds are 1, 2, 4, 8, 16, 32, 64, 128, 256
and 512, respectively. The programming starts with aλ =
0.01, which changes to 0.02, 0.03, 0.04 and 0.05 atτ = 51,
101, 151 and 201, respectively. Only the three leading peaks
carry a prolonged tail, whereas all others turn to be slightly
fronting. The gradual decrease of thek′′(τ) value leads to a
much smoother looking peak shape.

Case 3 (Five-stage programming with non-linear inter-
vals). Thek′′0 values are the same as in Case 2. The program
is basically linear, but with two accelerating periods be-
tweenτ = 51–100 andτ = 151–200. Spatially, the sample
zones are all expanding with time; but temporally, the peak
widths shrink during the non-linear isotherm range, which
can be identified by theστ(τ) plot. The peak type follows the
sequence: tailing-fronting-tailing-fronting-tailing (t-f-t-f-t
in brief). At the changing points, some peaks appear to be
segmental.

Case 4 (Five-stage programming with intervals and a termi-
nal stage). Similar to Case 3, but a terminal stage (λ = 0.1
after τ = 201) is applied to release those having highk′′0
compounds from the column. This action leads to a narrower
peak width and a higher peak height in the ending period.
The last peak looks very symmetrical, judging also from the
στ(τ) plot. The peak type follows a t-f-t-f-G trend (G for
Gaussian).

All of the RATCG diagrams are almost identical to those
created by the parcel matrix[16] or by the continuous equa-
tions (calculated for five separate stages).

3.8. Diffusion modification

The TCG equation can be further modified to include
the longitudinal dispersion–diffusion effect, which is also a
zone broadening factor. Diffusion will increase the standard

deviation, but will not affect the position of a peak during
the migration. Thus, the spatial variance can be written as:

σn(τ)
2 = σ2

0 + σretention(τ)
2 + σdiffusion(τ)

2 (23)

and the diffusion term is defined as:

σdiffusion(τ) =
√

2Dτ (24)

whereD is a dimensionless diffusion coefficient in this study.
It is a constant under a linear isotherm, but can be variable
with time under a non-linear isotherm. In the latter case it
should be denoted asD(τ).

Accordingly, under a linear isotherm, the spatial peak
standard deviation as stated inEq. (7)becomes:

σn(τ) =
√
σ2

0 + k′′0
(k′′0 + 1)2

τ + 2Dτ (25)

whereas under a non-linear isotherm,Eq. (8) can be
re-written as:

σn(τ) =
√
σ2

0 + 1

λ(k′′0 e−λτ + 1)
− 1

λ(k′′0 + 1)
+ 2D(τ)τ

(26)

When either of these two modified terms is substituted into
the spatial peak equation (Eq. (13)), the peak pattern is
still Gaussian; only the peak height is relatively lower, and
the width slightly wider or fatter. This also applies to the
temporally convoluted peaks (Eq. (16)). The temporal ap-
pearance will be slightly altered, but the trend of skew-
ness, the peak position and the migration route remain the
same. As a result, it can be concluded that the longitudinal
dispersion–diffusion is not a major factor that causes peak
asymmetry (it diminishes the asymmetry).

4. Conclusion

Attempts of using the Gaussian function to simulate chro-
matographic peak shapes have been extensively described,
and many modified Gaussian equations were proposed to
fit the observed peak shapes[8–14]. However, complete
success cannot be reached without endorsing the temporal
distortion effect, which is still a rather intangible or ab-
stract concept to most chromatographers. The implemen-
tation of the hypothetic parameterτ∗rm(τ) is an important
breakthrough, which offers a quick mathematical process
for the axial transformation, especially under a non-linear
isotherm, with sufficient physical meanings. After proper
convolution treatments, the Gaussian function is still the
backbone of all types of peaks, and the proposed TCG equa-
tion can be used as a solid foundation for further explanation
of peak shape problems. However, before it can be applied
to simulate a real chromatogram, additional modifications
to include the diffusion and extra column effects would be
necessary.

It is interesting to note that, the entire convolution concept
is still based on the simple equilibrium of plate theory, i.e.
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k′′ = ms/mm, without considering the complex Langmuir
isotherms or the multi-layer diffusion mechanisms. Yet, it
produces all types of peaks, which would have been nor-
mally regarded in the past as the extra column effects or
parabolic flow profile. This leads scientists to re-consider
that these spatial effects, although proven to exist, may not
be the exclusive reasons for peak asymmetry. Further experi-
mental clarification between the spatial and temporal effects
is especially encouraged.
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